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A Wideband Waveguide Transition Design
with Modified Dielectric Transformer Using

Edge-Based Tetrahedral Finite-Element Analysis
Ruey-Beei W%

Abstract—A waveguide transition analysis approach has been
established to deal with arbitrary shaped three-dimensional (3-D)
waveguide discontinuity problems, by hybridizing the edge-based
tetrahedral finite-element method for the junction region and the
analytic modal expansion technique for the waveguide region.
Several unique features have been imbedded in the analysis,
including a variational formula for the scattering coefficients, a
modified Delaunay triangulation for the mesh generation, and
a frontal solution technique for the sparse matrix solution. As
a result, the analysis is verified to be accurate. versatile, and
efficient through extensive comparisons with the theoretical and
measurement data in the available literature. The approach is
then applied to design a rectangular to dielectric-filled circular
waveguide transition with less than – 20 dB return loss over
a 40(fi bandwidth by using a suitable modified dielectric rod
transformer.

I. INTRODUCTION

D

IELECTRIC-FILLED circular waveguides have impor-

tant applications in many microwave devices, e.g., iso-

lators and phase shifters [1]. In these devices, although the
main bodies are in a circular shape, the input/output ports
in standard rectangular waveguides are always required. In
light of the abruptchange in the Waveguide shapes and

the constitutive dielectrics, it has been a great challenge to

deal with such waveguide transition problems. To achieve
good transition, the dielectric should somewhat intrude the
rectangular waveguide portion by a certain length and with a
suitable shape. Without available literature on this subject, the
design of such a transition is up to now been accomplished
mostly by trial and error, experimentally.

In light of the vast applications, waveguide discontinuity
problems have been dealt with by a lot of researchers for a long
time. Traditionally, most of the investigations are based on the
mode or field matching method originally proposed by Wexler
[2], which is basically limited to step-like discontinuities,
say [3], [4]. Recently, the numerically intensive but flexible
finite difference time domain method has also been tried for
waveguide junction problems [5]. However, the applications
have been plagued by its difficulty in modeling the curved
boundary and its inaccuracy in handling waveguide boundary
conditions.
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Among the available techniques, the finite-element method
(FEM) is probably the best one due to its capability of analyz-

ing three-dimensional (3-D) waveguide junctions which may
be inhomogeneously loaded and of arbitrary shape. In order to

confine the solution region, FEM should be hybridized with
some analytic expression, such as the eigenmode expansion,
to include the field in the unbounded exterior region. In the
beginning, the hybrid FEM was implemented to deal with
scattering of dielectric coated cylinders [6] and propagation
characteristics of dielectric waveguides [7]. Later on, it was

applied to model two-dimensional (2-D) planar MMIC devices
[8] and more recently, 3-D general waveguide discontinuity
problems [9], [10]. Together with the development of the edge
elements [11] to eliminate the occurrence of spurious modes,
the hybrid FEM has become a reliable method to deal with
many practical 3-D problems. Based on this method, computer
software has been developed and is available commercially
[12].

Even so, some fundamental problems still exist in FEM. One
of them is the stationary property of the formulation. Basically,
FEM relies on a functional which is in a form similar to the
variational principle proposed by Chen et al. [13]. It is not

difficult to show that the functional is stationary. However, as
pointed out in [11], it remains unresolved whether the formula

to calculate the desired physical parameters, e.g., the scattering
coeffic~ents, is stationary. As a result, the accuracy of the
calculated results may not be the optimum one obtainable in
the linear function space constructed to by the basis functions.

Another problem is how to achieve a reliable mesh gen-
eration for general 3-D objects. Although seldom addressed
in previous literature, the difficulty in automatic tetrahedral
mesh generation and the related database management has

strongly hindered the popularity of FEM. The Delaunay tri-
angulation [14] has already been successfully employed for
2-D electromagnetic problems [15]. Although theoretically
straightforward [ 16], the generalization to 3-D problems is
not so fruitful in practical applications. Some previous trail
of this algorithm reveals, but fails to prove, that the resultant
mesh includes a lot of undesired “sliver” elements and is not
the optimal one for 3-D FEM applications. Furthermore, the
algorithm for more complicated structures usual] y ends as a
vain attempt due to the finite digit accuracy in numerical
computation [17].

This paper starts in Section II with a unified variational

reaction derivation to the functional, which is then discretized
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Fig. 1. A typical waveguide discontinuity problem.

to yield a matrix equation for the unknown field by the edge-
based tetrahedral FEM. Not only the functional but also the
calculation formula for the desired scattering parameters are
shown to be stationary over the solution field. Section III
describes a modified Delaunay triangulation algorithm for the
automatic mesh generation. A program suitable for general 3-
D waveguide junction problems has been successfully tailored
in the personal computer. Accuracy of the program is vali-
dated in Section IV via comparisons with available theoretical
and/or experimental results in the literature. The design of a
waveguide junction with a dielectric transformer is discussed
in Section V. Finally, conclusions are drawn in Section VI.

II. VARIATIONAL REACTION FORMULATION

Fig. 1 shows a typical waveguide discontinuity problem
where several waveguides are connected through a junction
region which may be of arbitrary shape and may include

several different materials. To facilitate the formulation, con-
sider the simplest case of a single waveguide. With exact field
distribution in the waveguide junction inaccessible, numerical
methods should be resorted to in finding the approximate
solution.

Being not exact, the approximate field solution (~, ~) must
be supported by some source distribution

.i=uxti-jwei,

ii2f=-u xd-jw/J17. (1)

It is required that the supporting ~ott~ce should be as close

as possible to thle exact source (Jo, Al.), which is zero ev-
erywhere in the present scattering problem. The requirement,
however, is difficult to realize since it involves two vector
continuums in an unbounded region.

Fruitful constraints which reduce the requirement to a
smaller region will make the numerical solution easier and
more accu~ate. Several formulations are possible, among
which the E-formulation is to be employed here. We enforce
~ = d everywhere, ~hich is possi~le if we treat ~ as
unknown and express H in terms of E by

ii=
–1—v x i. (2)

jwp

It is not difficult to enforce that ~ = 6 inside the semi-
infinitely long waveguide region. By the modal expansion,

the tangential fields in the waveguide region (z < 0) can be
expressed as

m

rl=l

n=l

where (Ztm, ~tn ) is the tangential field distribution of the
nth mode, -ym is the complex propagation constant, a~ is
the given modal amplitude of incident wave, and a; is the
unknown modal amplitude of reflected wave. Due to the modal
orthogonality

/
.& X itn.~dr = 6~,n (4)

the unknown reflected wave can be obtained from the electric
field along the boundary (,z = O) by

The remaining requirement that ~= din the junction region
is very difficult to accomplish analytically. Instead, we employ
a lot of testing functions @ and require that for each one of
them, the weighted average over the junction region Q should
be zero, ie,

Note that ~ is expressible in terms of 1? as de~icted by (1)
and (2). Intuitively, the supporting error source J can be made
arbitrarily small almost everywhere if sufficient number of
testing functions are imposed.

After substituting t? by (1) and taking integration by part,
(6) can be expressed by

The ~ field on the waveguide boundary can be written in
terms of the boundary ~ field by (3) and (5). The contribution
from the remaining boundary, the metallic boundary of the
junction region, is zero s$ce the tangential electric field is
enforced zero there. The II field in the function region can be
expressed in terms of ~ by (2). As a result, (7) becomes
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which should equal zero for all the testing functions.

Noting that (8) IS symmetric with respect to -1? and &’, we

can yield a variational equation

bL = 0:

which can be shown to be stationary at the exact field ~0.

The functional L is expressed solely In terms of the unknown
electric field in the solution region. In contrast to the previous
approach, say [8], [9], the present variational equation does not
include any waveguide modal coefficients as the unknowns.
Instead, the scattering parameters are obtained from the electric
field a posferiori by employing (5).

It is interesting to depict the physical meaning of the
functional L. The term 1(~. ~) is zero since (8) 1s zero for

arbitrary ~“. including the case that * = E. The second term
in the right-hand side of (9) is directly related to the modal
amplitudes of the reflected waves as evident by (5). As a result.

stationary L implies stationary reflection coefficient S’ll, This
contradicts the statement made by Bossavit [11] claiming that
the general variational principle proposed by Chen et al. [13]

is useless.
The generalization of the expression (8) or (9) to junction

structures consisting of more than one waveguides is straight-
forward. To take into account the contributions from all the
waveguides, one needs only to include a summation sign over
all the waveguide ports in front of the series summation of
the boundary terms.

It is a typical procedure to discretize (8) for numerical
computation by the edge-based tetrahedral FEM [9]. The
junction region is first divided into many small tetrahedral
elements. Inside each tetrahedral element, the electric fields
1? and ~“ are expanded by the Whitney one-form edge basis
[11] with the tangential field components along the six edges
as the expansion coefficients. Substituting the fields into (8)
and taking the volume and surface integrals. (8) can be cast
into the form

I(l?, E“) = –eaT [{G+zbnb:}e-’z(’’bnl
(lo)

where ea and e denote the column vectors constituted by
all the expansion coefftclents for the fields ~“ and ~, re-
spectively, superscript T denotes the transpose, G is a sparse
matrix obtained by assembling the volume integrals over all
the elements, and bn is a column vector formed by assembling
the surface integrals taken between the nth waveguide mode
and all those elements with one facet on the waveguide
boundary. Since (10) is zero for arbitrary ea. the resultant
column vector inside the bracket should be zero. This yields
a matrix equation for the unknown column vector e.

HI. MESH GENERATION

It is well accepted that the tetrahedral elements are the
most versatile to model 3-D structures of arbitrary shapes.

However, how to dewse a reliable and robust algorlthm which
can automatically generate a good mesh for almost any 3-D
structures has been always a bothersome problem.

The Voronoi tessellation and the dual Delaunay triangulation
have proven the existence of the best mesh for given nodal
points in the 2-D plane [14]. The resultant mesh is optimum
in the sense that its minimum angle is maximum among all
the possible meshes connecting those nodal points. It is well
known that a mesh T is a Delaunay triangulation if and only if
no vertex is interior to any circumcircle of a triangle of T. This
property can be generalized to 3-D space if the triangle and

clrcumcircle are replaced by the tetrahedron and circumsphere,
respectively.

Based on this property, a node insertion algorithm which is
easy to understand and applicable to multidimensional space
has been proposed [16]. The algorithm starts from an initial
mesh consisting of a single tetrahedron which is large enough
to enclose all the nodal points. New internal tetrahedral are
formed as the points are entered into the mesh one at a time.
At each stage of the process. a search is made for all current
tetrahedral to identify those whose circumspheres contain the
newly entered point, say P. The union of all such tetrahedral
forms what we call an insertion polyhedron, which contains
P but no other previously inserted points in its interior.

All the tetrahedral in the insertion polyhedron are cleared to
make room for the new created tetrahedral which are formed
by connecting P to all triangular facets of the polyhedron.
When combined with the tetrahedral outside the polyhedron,
the resultant new mesh defines a Delaunay triangulation which
contains the newly added point. The process repeats until all
the points are included.

Although theoretically exact, the Delaunay triangulation
usually fails due to the ex~stence of the nearly degenerate cases
in practice. Degenerate cases happen when the newly inserted

point P appears to he very close to the circumsphere surface
associated with a certain existing tetrahedron. Whenever the
distance of P to any existing circumsphere is less than the
accumulated computer truncation error, there is the danger
of making an incorrect or inconsistent decision regarding
rejection or selection of the tetrahedron. This in turn produces
structural inconsistencies, ie, overlapping tetrahedral or gaps
in the mesh, and eventually halts the triangulation process.
Fig. 2 shows a typical example where P is close to the

circumclrcles of the triangles J..4DB, ABEC. AD GE. and
AEGF. Structural mconslstency happens when LEGl? is
selected whale ADG’E IS rejected.

A simple remedy was proposed m [17], which suggested
a slight perturbation of the coordinates of the newly entered
nodal point whenever the degenerate case happens. For struc-
tures with more nodal points, it becomes more probable that
the newly inserted point is close to the circumsphere surfaces
of many existing tetrahedral. As a result. it is difficult to
properly tune the point into a region away from all these
surfaces. Furthermore, the tuned point may become close to the
circumsphere surfaces of other tetrahedral. The tuning process
should be tried again and again. Our practice shows that
this remedy is unsuccessful, even when the double precision
computation is employed.
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Fig. 2. Degenerate case where the new point P is close to circumcircles of
existing triangles.

This analysis adopts a better strategy which enforces the

structural consistency in the node insertion process. The strat-
egy is as regard, selecting suitable tetrahedral to form the
insertion polyhedron for the newly inserted point P. It is
described as follc)ws.

1)

2)

3)

This

Allowing a suitable threshold of computation error,
all the tetrahedral whose circumspheres may possibly
enclose P are activated.
Starting with the tetrahedron whose circumventer is
closest to .P, the insertion polyhedron grows by in-
cluding all those activated tetrahedral which can connect
the polyhedron by at least one surface. The remaining
tetrahedral are isolated from the insertion polyhedron.
They are deactivated.
Check the volume of the tetrahedron formed by P and
each triangular facet of the insertion polyhedron. If
the volume is negative, this implies that some overlap-
ping tetrahedral will result. In that case, the activated
tetrahedron which contributed the triangular facet is de-
activated. Repeat steps 2) and 3) for all those tetrahedral
remaining activated until the volume of each new created

tetrahedron is positive.

strategy assures the structural consistency of the newly
constructed mesh in each step, although the Delaunay property
may be slightly sacrificed. The decision regarding the selection
or rejection does not rely solely on the Delaunay property,
which suffers from the computer truncation error. Rather, it
sticks to the structural consistency which is combinatorial and
will not deteriorate as the node insertion proceeds.

Roughly speaking, the Delaunay triangulation results in a

mesh which has well proportioned lengths (areas) among the
comprising sides (surfaces) of all the generated triangular
(tetrahedral) elements. A triangle can be uniquely defined by
its three side lengths. However, it is not sufficient to determine
the tetrahedron given the areas of its four surfaces. As a result,
the Delaunay triangulation in the 3-D case may create some
sliver tetrahedral, in which the four facets are well proportioned
but the volume is very small. This problem usually happens
if there are any four nearby points which are almost, but not
exactly, coplanar.

To explain this occurrence, consider a simple configura-
tion in Fig. 3 th~t consists of five nodal points: A(O, O, O),

zA Z*

h . . h -.
‘.E ‘-E

A

(a) [b)

Fig. 3. Two possible mesh division for five nodal points. (a) Good mesh.
(b) Bad mesh.

l?(2, O, O), C(2, 2, c), D(O, 2, O), and E(l, 1, h), where c
is a small positive number and h > 0. Note that the four
points A, B, C, D are nearly coplanar. Fig. 3 shows the two
possible mesh divisions for this configuration. One consists
of two tetrahedral, ABDE and BCDE, while the other has
three tetrahedral, ACDE, ABCE, and ABCD. Obviously, the
latter is worse since it includes a sliver tetrahedron ABCD.
For the former mesh, it is easy to verify that the center and
radius of the circumsphere of ABDE are (1, 1, zo ) and h – ZO,

respectively, where zo = ~ – ~. The mesh will satisfy the

Delaunay property if and only if the point C is outside of the
circumsphere, ie,

(1)2 + (1)2+ (z. - C)2 > (h - Zo)’. (11)

In other words, the Delaunay triangulation yields to the bad
mesh shown in Fig. 3(b) when h > W and O < c < h – ~.

The sliver tetrahedral are undesirable since (8) requires
taking the curl of its edge basis and the curl may be nearly
singular. Once the bad submesh shown in Fig. 3(b) is located
it should be rearranged into the good submesh shown in Fig.
3(a) [17]. More general consideration is also available for
complicated situations where the bad submesh involves more
than three tetrahedral [16].

IV. NUMERICAL RESULTS AND COMPARISONS

A general waveguide transition analysis program WG2WG
has been established to deal with electromagnetic scattering
off an arbitrarily shaped 3-D junction between several circular
andlor rectangular waveguides. Based on the slicing approach,
nodal points are chosen to discretize the solution region as
well as reasonably model the shape of the conductor and/or
dielectric interfaces [17]. The modified Delaunay triangulation
is applied to construct the mesh, under the constraint that no
tetrahedron may intersect different material regions.

Applying FEM procedure yields to a matrix equation for
the field unknowns. As far as the scattering parameters are
concerned, only the unknowns along the boundary are relevant.
It will be especially advantageous to solve the matrix equation
by the frontal solution technique [19]. All the unknowns
interior to the solution region are eliminated rather than
solved [7]. The final boundary matrix, being independent of
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Fig. 4. Calculated reflection coefficient for a dielectric loaded rcctmrgular
waveguidc. Comparisons among finite difference method, rectangular ele-
ments based FEM [ 10], and the present analysis.

the excitation on the waveguide ports, is LU-decomposed.

By specifying the excitation in the right-hand vector, the

boundary unknowns can be solved by forward and backward

substitutions and the desired scattering matrix can be obtained.

This approach is very efficient in memory requirement such

that the program can be executed in almost any computer
platform. Actually, all the following results are executed using
a notebook IBM/PC-486 personal computer.

The number of waveguide modes should be truncated to
perform the numerical computations. It is well known that
the relative convergency problem inherent in the mode match-
ing method may happen due to truncating a double series

expansion [3]. This analysis suggests a natural way in the
truncation of modes according to their cutoff frequencies,
which can apply to not only rectangular but also circular or
more general waveguides. In addition, it will be advantageous
to intentionally choose the waveguide boundary plane slightly

away from the junction region. Although this unavoidably
enlarges the solution region, it can assure that even the
extremely high order modes that may be excited at the junction
plane exponentially decay to be negligible after propagating
through this short waveguide section. As a result, several
tens of modes are more than enough to account for all the
higher order modes’ effects, free of any relative convergency
problem.

Being flexible, the WG2WG program has been applied
to analyze many waveguide discontinuity problems available
in the literature. The comparisons have been found to be
satisfactory; two examples will be shown here. The first
example considers a rectangular waveguide of size 2b x b
loaded with a material of size 0.888b x 0.39W, length 0.8b,
and dielectric constant c, = 6 [10, Fig. 3]. Since the structure
can be modeled as well by rectangular mesh, both the results
by rectangular elements based FEM and the finite difference
method (FDM) are available in the literature [1O, Fig. 5]. In

j,, :,, ,r,,,, ,,, ,,, r,.,,’
‘,,,

16.0 16.5 17.0 17.5 1

Frequency (G Hz)

(a)

4

.
a)a)
L
m

4

m“
.
0

-d~
Frequency (G Hz) “

o

.0

(b)

Fig. 5, Reflection coefficient for a step transformer between WR-62 and
circular waveguides. (a) Magmtude. (b) Phase, Comparisons among mode

matching method, measurement [4], and the present anal ysis,

the present analysis, the tetrahedral elements are employed to
model the structure. Two meshes with division sizes similar
to those adopted in [10, Fig. 4] have been tried. The results
are shown in Fig. 4 by solid and dashed curves, respectively.
Although requiring more unknowns, the present FEM analysis
exhibits better accuracy than its counterpart using rectangular
elements in [10]. Nonetheless, both methods yield almost
identical results when using the finer mesh, in this case at
least 15 division cells per wavelength in each material over the
frequency band of interest. This verifies the capability of the
present analysis in dealing with the dielectric loaded junctions.

The second example considers a transition between a WR-
62 rectangular guide and a circular guide of diameter 19.5
mm through an intermediate rectangular guide of size 15
mm x 12.4 mm and length 4.35 mm [4, Fig. 3]. The transition
is designed to achieve a less than —20 dB return loss over
an 11YO bandwidth. Note that the structure can not be well
modeled by all those methods which rely on a rectangular
mesh. In addition, the reflection coefficient, being very small
in a wide frequency range, can not be predicted successfully
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Fig. 6. Transition WR-187 to circular waveguide formed by a dielectric rod of diameter d and length 1. (a) Structure. (b) Reflection coefficients with fixed
d = 0.44 in and length t as a parameter. (c) Reflection coefficients of three matched designs.

by numerical methods without high accuracy. The magnitude
and phase of the calculated results by the present FEM analysis
are shown in Fig 5(a) and (b), respectively. The dashed and
solid curves are obtained by using the meshes of at least 15
and 20 division cells per wavelength in the frequency band
of interest, respectively. They are found to be in excellent
agreement with the measured data and the results obtained
by the mode matching method [4]. This example verifies the
capability of the present analysis in dealing with junctions of
more general sha~pes.

V. WAVEGIJIDE TRANSITION WITH TRANSFORMER

It is much more difficult to design the transition between

rectangular and dielectric-filled circular waveguides. The

abrupt change in both the dielectric constant and the
waveguide shape makes the analysis a great challenge. Fig.
6(a) shows a transition design between a standard WR-187
rectangular waveguide and a circular waveguide of diameter
0.44 in and filled with dielectric of e, = 16. In the transition

waveguide region by a certain length 1. FEM is very suitable
for the analysis of such a transition structure.

The case of 1 = O denotes a step junction without

transformer. As shown by the calculated results in Fig. 6(b),

the transition is bad over the whole operating frequency

band. An additional transformer section can greatly improve

the transition property, as shown by the dashed curves in
Fig. 6(b). By varying the section length, one may even
achieve a matched design, say 1 = 0.433 in in this case,

with zero reflection at a certain frequency. It is also possible
to design a matched transition at other frequencies but

choosing the diameter of the inserted rod d as another
parameter. For example, Fig. 6(c) shows three designs

of (d, 1) = (0.50 in, 0.480 in), (0.44 in, 0.433 in), and

(0.38 in, 0.384 in), which are matched at 5.17 GHz, 5.72
GHz, and 6.43 GHz, respectively. However, the bandwidth in
which the return loss is less than –20 dB is in general small,
about 5~0, by such a single transformer design.

To achieve a wideband transition, it would be advantageous

to consider the modified transformer design shown in Fig. 7.

section, the circular dielectric rod intrudes into the rectangular The inserted circular rod is made of an intermediate dielectric



I 030 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 7, JULY 1996
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.068 .110

Fig. 7. A wideband transition design of modified transformer.

constant to provide additional impedance match. It has a step

cut in the diameter and can be offset from the joint of the two

metallic waveguides by a distance s.

The original design is performed for the case s = O in the
industry by trial and error [20]. The solid curve in Fig. 8 shows
the theoretical results obtained by using a mesh with at least
ten cells per material wavelength. The convergency is assured
by the comparison with the results obtained by employing a
finer mesh of at least 15 cells per material wavelength.

Fig. 9 shows a 3-D plot of the finer mesh which consists of
17301 tetrahedral. The three different material regions in the
original structure are intentionally dissected to provide a closer
look. Note the coarser mesh in the rectangular waveguide
region, where the wavelength is about three times that in the
material. The mesh includes 18921 unknowns, although the
matrix actually required in the program execution is symmetric
and of a largest dimension of 739 only. The computation time
for the scattering matrix per frequency is about 45 min by a
notebook IBM/PC-486 with 8 mbyte RAM. It is interesting
to compare the computation time of the present analysis with
that of the commercial software HFSS [12]. The HFSS was
employed for the analysis of a dual DR filter which is divided
into 8073 tetrahedral [21 ]. It was reported that the computation
time for each frequency is about 12 h on a HP-720/9000
workstation with 128 mbyte RAM,

The measured data [20] are also included in Fig. 8 for
comparison. In light of the great challenge in fabrication
control and measurement calibration for both the nonstandard
waveguides, the measured data show reasonable agreement

1.0

0.8

m-

0.0

T I ! ) 1 J

1
1 r I

12 14 16 18 20

Frequency (GHz)

Fig, 8. Calculated and measured reflection coefficient for the transition

structure m Fig. 7 in case of zero offset (,s = 0).

Fig. 9. Mesh for the transition s~naxure shown in Fig. 7.

with the theoretical results. Both the theoretical and measured
results confirm that this design, although more complicated
in fabrication, can provide a larger bandwidth, about 15% in
this case.

Furthermore, a design with even larger bandwidth can be
accomplished by choosing a suitable offset s. Fig. 10 shows
the magnitude of reflection coefficient with the offset as a
parameter. With a small offset, it seems that there are two
resonant frequencies: one nearly fixed at 13 GHz and the other
inversely proportional to the length of the dielectric rod in the
rectangular waveguide portion. Increasing the offset makes the
two resonant mechanisms close to each other and consequently
achieves a fruitful design at s = 0.03 in. The transition has
a less than –20 dB return loss from 12.5 GHz to 18.5 GHz,
which already covers the whole spectrum that the waveguides
are designed for use. At a certain offset, say s = 0.045 in,
the transition may even become a perfect match at 14.8 GHz.
The return loss is smaller than –30 dB over a bandwidth of
about 1.2 GHz.
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VI, CONCLUSION

This paper employs a hybrid approach to deal with general

3-D waveguide junction problems, by combining the FEM
for the irregular but finite-sized transition region and the
mode expansion technique for the regular but semi-infinitely
long waveguides. The approach is applied to design the
transition between rectangular and dielectric-filled circular
waveguides, Due to the change in both the dielectric constant
and the waveguide shape, a simple design with abrupt step
junction always results in intolerable return loss. Extending the
dielectric into the rectangular waveguide portion significantly
improves the transition performance. A perfect match design
can even be achieved by choosing the dielectric rod of a
suitable diameter and length. However, the bandwidth in which
the return loss is less than –20 dB is in general small, A
good transition of higher bandwidth can be accomplished by
using material of intermediate dielectric constant. Based on
this modified transformer, a nearly full band transition design
has been demonstrated successfully. Even in some stringent
systems which require a –30 dB return loss, successful

transition design can be fulfilled by the modified transformer
with a bandwidth of about 10%.
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